
So, if I do not implement this counter method or the stack method in hardware I have to 

implement that in software, meaning that whenever there is a memory reference, I have to go 

to the OS and update data structures, which is also impractical because memory references are 

a very frequent phenomena. So therefore, the exact version of ALU is not often used and instead 

approximate LRU is commonly used. 

(Refer Slide Time: 32:29) 

 

So, one of the most common implementations is to use an approximate version of ALU, which 

uses reference bit in the page table for each page. So, what how does this operate? On a 

reference to a page this bit is set to 1 ok. So, each page has a reference bit when I when I am 

referring to this page when I am accessing this page and this page is in memory I am setting 

this bit from 0 to 1, if it is not already 1 ok. 

Now, at and I have time periods or frames or intervals. So, fixed size intervals after which I 

check for the after which I set the bits of all pages, I said the reference bits of all pages to 0. 

So, I when at the start of a time interval, I set the reference bits of all pages to 0 and then within 

that particular interval every page that is referenced their reference bits are set to 1. And then 

when the when a particular page has to be replaced, I will try to use a page for which the 

reference bit is 0. So, a reference bit is 0 means that in the in the current time interval it has not 

been accessed; that means, it has it is it is of higher probability that it is of higher probability 

that this page will also not be used in the recent future because, it has not been used in the 

current timestamp. 

993



This anyway does not mean that this is the least recently used, but it is the it is an approximate 

LRU to avoid the high hardware cost of LRU, I will just keep one reference bit on each memory 

reference if that reference bit is 0 I set it to 1 and during replacement I try to find a page for 

which the reference bit is 0; that means, which has not been used it is with the approximate 

assumption that this is not a very frequently used page because, this has not been accessed in 

the current time interval and therefore, this one could be a good page to replace ok. 

Now if all bits are same for a for a given reference bit suppose I find out among all pages for 

which the reference bit is 0, I may like to select the one which has which was which came into 

memory at the earliest; that means, first in first out, I will use FIFO for a given value of the 

reference bit. So, if I get a set of pages with reference bit 0, I can choose the one which came 

into memory at the earliest ok. So, that will be that will be evicted; so among all pages which 

have the same reference bit, I use the FIFO strategy to find out the page which needs to be 

replaced. 

(Refer Slide Time: 35:46) 

 

The next one is sampled LRU, sampled LRU who is an extension over the approximate LRU 

which we studied using just one reference bit. And it has slightly higher hardware cost in that, 

the first byte of each page is used by this strategy. Now what happens is this, that instead of in 

addition to the reference bit I have a reference byte for each page. So, the first byte of a page 

will be used as a reference byte reference byte for the page. Now at set time intervals I have 

similar time intervals as was for the simple approximate LRU I have similar time intervals. 

994



And we take an interrupt and get the OS involved. So, at the end of each time interval there 

what I was doing, I was I was setting all the reference bits to 0. Here, additionally what I do is 

I get the OS involved and what does the OS do here? The OS reads the reference bit for each 

page; the OS reads the reference bit for each page and the reference which is stuffed, so, at the 

beginning byte for the page. So, in addition I already have the reference bits for each page. 

So, at the beginning of the interval I read the reference bit of each page and, stuff it into the 

reference byte. And then I all reference bits are again clear; very similar to the previous scheme, 

this one is very similar to the previous scheme, the only difference being that before setting all 

the reference bits of each page to 0, I copied the reference bits of each page and stuff it into the 

reference byte. And then on a page fault I replace the page with the smallest reference byte. 

(Refer Slide Time: 37:54) 

 

So, how does this scheme work? Now let us say these are my reference bytes for each page. 

So, these are distinct pages; page 1, page 2, page 3, page 4, page 5 and this is the page table. 

So, this is the page table and the page table contains my reference bits; these are my reference 

bits for these pages. 

Now, what happens is that now when at the end of so, what has happened is that here my time 

interval has come to an end; the current time interval. So, at the beginning of every time 

interval, the OS takes charge and let us say this one is the end of one time interval, there is an 

interrupt and the OS has taken charge. What does the OS do? It first throws these bits. So, these 

995



the least bits are thrown away and what am I doing? I am stuffing all these bits to these places 

ok. 

So, I am stuffing these bits so, when I stuff this bits, so, see these bits here are the same as the 

MSBs here, as the MSB here, then I am clearing all my reference bits ok, I am clearing all my 

reference bits. Now what happens? The values this byte; if I take the numerical value of this 

byte. So, I take this value of this each of these reference byte; this reference byte. So, I take the 

numerical decimal value say decimal value of this byte. Now what does this decimal value tell? 

This decimal value tells me in the last 8 intervals what was the access pattern of it. 

And this MSB has the highest weight meaning that it could be that in the last few intervals this 

page was not used, but this page was used immediately here. So, even if these bits are 0, I 

should keep this page. So, and let us say so therefore, the numerical value of this byte tells me 

how good is this page for replacement; lower the value of this byte better is a better is this page 

or candidate for replacement. So, I should replace a page having least value for this byte. Why? 

Because this tells me this byte tells me two things. A very low value of this byte tells me that 

this page was not accessed recently and this page was not accessed possibly many times 

recently. 

So, this page was not accessed very recently and this page was not accessed possibly not many 

times recently. So, this is what it tells me the numerical value of this byte. So, I will replace 

that page having low numerical lowest numerical value of this byte. Again for all pages having 

the same value of this numerical byte, so, having the same numerical value all pages for which 

the numerical value of this byte is same, I will choose that page which came into the memory 

at the earliest. So, among all pages having the same value of this numerical byte numerical 

value of this byte, I will use the FIFO strategy to choosing for choosing the page which has to 

be replaced. 

996



(Refer Slide Time: 41:33) 

 

So, we will now look at the clock algorithm or the second chance page replacement algorithm. 

So, it is an extension, it is it uses the reference bits you uses the reference bits in a different 

way. So, how does this operate? So, on a page fault it searches through pages and then if the 

pages reference bit is set to 1, then it sets it to 0 and skips it. So, it gives this page as second 

chance. So, if it is 1 it does not it does not replace it, but it sets it to 0 ok. Now if a pages 

reference bit is 0 this is selected for replacement, if it is 0 then among all pages that is 0 I use 

the FIFO strategy to replace the one which has 0. Now it searches it starts the search from 

where the last search was left off. 

(Refer Slide Time: 42:38) 

 

997



So, how does this scheme work? So, let us say the previous search ended with the pointer; that 

means, the last page which was accessed was page 6 ok, which was accessed which was page 

number 6. Now this is the pointer to the first page to check. So, for all pages I have a circular 

linked list, for all pages I have a circular linked list. And for you suppose the user references 

page number 4 and that is not currently in the physical memory. So, I have to replace to bring 

in page 4, I have to replace some page. So, last time the search ended just before page 6, in the 

physical frame containing page 6. So, now, I will start from the frame containing page 6, 𝑃6. 

So, this one becomes the first page to check. 

Now, therefore so, first I find that the reference bit is 1 and not 0. So, I make the reference 

between 0 and I don’t replace this page, then I come to the next frame; this frame contains 𝑃1, 

the reference bit is 1 not 0. So, I only set it to 0 and go to the and check the next frame, I come 

to the next frame, it contains page number 7 and the reference bit is and the reference bit is 1. 

So, again I set it to 0 and I again proceed, when I come to page when I come to the next page 

frame I see that it contains page 3 and a reference bit for page 3 is 0; which means that in the 

current time interval page 3 was not accessed. 

So, therefore, I select page 3 for replacement and after replacement I so, I select page 3 for 

replacement and it goes to 𝑃4 page number 4 comes in page of page 3 and the reference bit 

again is set to 1. And then for the next search it now points to this page frame. So, my current 

search ended at this page frame and then my next therefore, search will start from the next page 

frame. So, user references page 4 this is not currently paged, we start at page 6, we check 𝑃6, 

then 𝑃1, then 𝑃7 and set their reference bits to 0, give them a second chance. And then check 

page 3 and notice that the reference bit is 0 and then we select 𝑃3 for replacement and set the 

pointer to 𝑃9 for the next search. Now what is good about this algorithm is that if all pages are 

1, then ultimately in the next round I will I will select this page. 

This one has a low overhead why? Because I am not searching for all pages which has a 

reference bit of 0. So, possibly which has a reference bit of 0 and I am going on searching for 

the next page which has a reference bit of 0. So, if all pages have a reference bit of 1, it will 

the search will circle through all page frames in physical memory and then come back to the 

first page which was for which the memory bit was set to 0 from 1 and it will be the 1 to be 

evicted. So, although this page is referenced, but I have been able to give a second chance and 

because all pages have been recently used I could not find a page with the reference bits 0 and 

I choose I will choose that one for replacement. 

998



(Refer Slide Time: 46:20) 

 

Now, one aspect which the second chance algorithm does not take care, or ignores is that was 

is this page dirty or not is this has this page been modified has been written to or not, if a page 

has not been written to it is dirty. So, before a dirty page can be replaced it must be written to 

disk. Before a dirty page has been replaced it must be written to disk and this has higher 

overhead. A clean page does not need to be written to the disk and therefore, it has much lower 

overhead as replacement I can just discard this page because it is not written and therefore, it 

does not need to be written back to disk, it can just be discarded and in its place a new page 

can come to ok. 

The page on disk is already up to date. So, we would rather replace an old clean page old and 

clean page will rather an old clean page than an old dirty page. So, if I if both pages are old I 

will choose one which is which is which is clean and which is not dirty, because it will I don’t 

have to write that page back to disk. 

999



(Refer Slide Time: 47:29) 

 

So, now, we will go and see an extension of the modified clock replacement algorithm, in 

which we use the 2 bits both the reference bits and the dirty bit. It is similar to the clock 

algorithm, but now each page instead of having 2 states whether it is referenced or not 

referenced will all have 4 states, whether it is referenced or not referenced and also whether it 

is dirty or non dirty. So, if a page has its reference bit 0 and it is its dirty bit also 0, it means 

that this page was not referenced in the current interval and is also clean; that means, it is while 

when replaced I don’t need to write this page back on to disk. 

If it is 01 it is not referenced and but it is dirty. So, it is not referenced in the current time 

interval, but in the last wherever it was last used whenever, it was last used it was written to 

therefore, if I choose this page for replacement I need to write this page first back into disk then 

bring a new page. Then it the next one is 10, the page has been referenced in the current interval, 

but is clean that means, I don’t I can discard this page ok. However, it was referenced so, it 

could be that it will again be referenced in the near future; however, because I have no one to 

replace I may need to replace this if the other options are not there. 

So, and if it is 11 it is both referenced and then dirty, this one is the late least preferred set of 

pages, if the if a page has the pages which have this 11 set they will be the least preferred set 

of pages to be replaced. So, the order of preference for replacement goes from the one above. 

So, how will the modified clock replacement algorithm work? 

1000



(Refer Slide Time: 49:38) 

 

So, add a second bit to the page table the dirty bit, hardware sets this bit on write to a page fine, 

the OS can clear this bit ok. Now, just do clock algorithm and look for the best page to replace. 

So, what do you do? In one round of the clock you try to find 0 a page which is 00 and in this 

one if you have for all those pages which are 01 you set it to 00 ok. So, if you have the least 

significant bit 1 in the first round you set it to 0 and, you go on looking for a page which is 

which has a page which has both bits 0. If you find a page which has both bit 0, you use it for 

replacement. If you see that if both bits are not 0, then you find out whether the least significant 

bit is non-zero, if the least significant bit is non-zero you set it to 0 fine. Now, in the in the first 

round if now no page is found, then you find try to find a page for which is which is if you try 

to find a page which is then 10. So, you go on making multiple passes in the order of preference 

setting 1 bit to 0 at that time and hence you will you will you may require multiple passes to 

passes through the list to get to a desired page to get the desired page for replacement. 

1001



(Refer Slide Time: 51:17) 

 

So, now before proceeding we will take a small example. Consider a computer system with 10 

physical page frames, so, I have 10 physical page frames. The system is provided with an axis 

sequence 𝑎1, 𝑎2, … up to 𝑎20, 𝑎1, 𝑎2, so. Pages 𝑎1 up to 𝑎20 are accessed one after the other and 

again in sequence page 𝑎1 up to 𝑎20; where each 𝑎𝑖 is a distinct virtual page number. So, each 

𝑎𝑖 is a distinct virtual page number. Determine the difference in the number of page faults 

between the last in first out page replacement policy and the optimal page replacement policy. 

So, let us first see what will happen in the last in first out page replacement policy? I have 10 

physical page frames. So, 𝑎1, 𝑎2, … up to 𝑎10will result in compulsory misses. So, 10 page 

faults page faults. So, compulsory page faults 10 page faults ok. Now 𝑎11 who so it is last in 

first out. So, last in is 𝑎10; so 𝑎11 will replace 𝑎10, 𝑎12 will replace who will who will it replace 

it will replace 𝑎11 ok. And then there will be again these 10 page faults up to 𝑎20 up to 𝑎20 so, 

10 page faults ok. Now after this what do you have? You in the in the page frames you have a1 

to 𝑎9, so, after this sequence after this one is done, you have after the first set of 1 to 20 

references you in the in the physical memory you have pages 1, 𝑎1, 𝑎2, 𝑎9 and 𝑎20; this is what 

you have. Now, therefore, the next set of 9 accesses do not result in a page fault in the LRU, in 

the least last in first out page replacement policy these will be hits. So, these will be page hits, 

this will not be page faults these will be hits. 

Now, 𝑎10 will again result in a fault. Now who will 𝑎10, 𝑎10 will be who will it replace? So, 

this is a last in last in first out page replacement policy. So, therefore, so therefore, 𝑎10 will 𝑎10 

1002



when it is accessed it will it will be replaced by the one which came in last; who came in last 

𝑎20 because, 𝑎1 to 𝑎9 resulted in page hits they were not brought in. So, last in, in this system 

of in this system that means, in the set of 10 page frames that I have currently this set of 10 

page frames that I have currently 𝑎20 is the last in page. 

So, 𝑎10 will be again replaced by this one. So, 𝑎10 will replace 𝑎20, 𝑎11 will again replace 𝑎10 

will again replace 𝑎10 will again replace 𝑎10 and likewise, 𝑎20 will result in a page fault and it 

will replace 𝑎19 likewise. So, therefore, how many page faults will you have? You will you 

will have here, let us see these are 10 page faults again these are 10 page faults and, then from 

𝑎20, 𝑎10 to 𝑎20 you will have 11 more page faults. So, this one will be 11 page faults. 

So, for the last in for the LIFO strategy for the LIFO strategy, you will have 31 page faults; for 

the LIFO strategy, you will have 31 page faults. Now when you use the optimal page 

replacement, you see that this 20 page faults will still be there. In the optimal page replacement, 

these 20 faults will still be there because these are all compulsory page faults ok. Now in the 

in the optimal policy also when 11 comes it will replace page 10 because, it will see in future 

and find out whom to replace ok. It will find out that 𝑎1 and to 𝑎9 will be replaced will be 

needed later. So, it will go on replacing them ok. So, in a similar way as the as the LIFO strategy 

it will also do the same and at the end of the first 20 accesses it will also have the optimal policy 

will also have 𝑎1, 𝑎2, 𝑎9 and 𝑎20 in the in the memory ok. 

Now, what will happen 𝑎1 to 𝑎9 will be page hits, when 𝑎20 comes in now which 1 will which 

page will the optimal page replacement policy replace? It will replace any one of the pages 

between 𝑎1 and 𝑎9, but it will not replace 𝑎20 ok. So, why will that happen? Because 𝑎20 it 

knows that will be needed again. So, 𝑎10, 𝑎11, 𝑎10, 𝑎11, 𝑎12these when these will be accessed 

it will go on accessing these one, it will it will keep a𝑎20 in the memory. 

So, that when 𝑎20 is needed again later it will be found in the physical memory; 𝑎20 the access 

of 𝑎20 will not result in a page fault for the optimal page replacement algorithm because, it has 

a oracle to know which page will be used in future ok. So, 𝑎20 will not result in a page fault 

and therefore, the optimal policy will incur only 30 page faults. So, the question determine the 

difference in the number of page faults between the LIFO page replacement policy and the 

optimal page replacement policy, the answer will be 1, the difference is 1. 

1003



(Refer Slide Time: 58:05) 

 

Now we go on to understand one aspect of page replacement, which was important for which 

is important from a theoretical perspective and, also because this was quite a concern for early 

page replacement designer page replacement policy designers, who used a FIFO for their 

replacement algorithms. So, the people who used FIFO well encountered an anomaly which is 

which is popularly, or commonly known as Belady’s anomaly. 

Now, what is this? Let us say that you have 3 page frames, let us say you have 3 page frames 

in memory ok. The your whole memory consists of only 3 page frames, in one situation and 4 

page frames in another situation. So, in one case you have a system containing 4 frames in 

memory and in one case you have 3 frames in memory. Now, sometimes it so, happens that for 

example, for this reference string it so happens that FIFO replacement for the FIFO replacement 

policy, when you have lower number of frames in memory, you will have lesser lower number 

of page faults, than when you have more number of frames in memory, you will have more 

page faults. 

Now this should not happen right because, you have more space in physical memory when you 

have more space 4 frames in physical memory means that you have higher space the capacity 

of the physical memory is higher, than when you only have 3 frames in physical memory ok. 

So, the capacity of the physical memory is higher, but you still are incurring higher number of 

page faults. So, this is an anomaly which is referred to as Belady’s anomaly. 

1004


